- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Iosup, Alexandru (3)
-
Hegeman, Tim (2)
-
Uta, Alexandru (2)
-
Ammar, Khaled (1)
-
Angles, Renzo (1)
-
Aref, Walid G. (1)
-
Arenas, Marcelo (1)
-
Besta, Maciej (1)
-
Boncz, Peter A. (1)
-
Bonifati, Angela (1)
-
Custura, Alexandru (1)
-
Daudjee, Khuzaima (1)
-
Deelman, Ewa (1)
-
Dumbrava, Stefania (1)
-
Duplyakin, Dmitry (1)
-
Hartig, Olaf (1)
-
Haslhofer, Bernhard (1)
-
Hidders, Jan (1)
-
Hose, Katja (1)
-
Iamnitchi, Adriana (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Versluis, Laurens; Mathá, Roland; Talluri, Sacheendra; Hegeman, Tim; Prodan, Radu; Deelman, Ewa; Iosup, Alexandru (, IEEE Transactions on Parallel and Distributed Systems)
-
Uta, Alexandru; Custura, Alexandru; Duplyakin, Dmitry; Jimenez, Ivo; Rellermeyer, Jan; Maltzahn, Carlos; Ricci, Robert; Iosup, Alexandru (, Proceedings of the Seventeenth USENIX Symposium on Networked Systems Design and Implementation (NSDI))Performance variability has been acknowledged as a problem for over a decade by cloud practitioners and performance engineers. Yet, our survey of top systems conferences reveals that the research community regularly disregards variability when running experiments in the cloud. Focusing on networks, we assess the impact of variability on cloud-based big-data workloads by gathering traces from mainstream commercial clouds and private research clouds. Our data collection consists of millions of datapoints gathered while transferring over 9 petabytes of data. We characterize the network variability present in our data and show that, even though commercial cloud providers implement mechanisms for quality-of-service enforcement, variability still occurs, and is even exacerbated by such mechanisms and service provider policies. We show how big-data workloads suffer from significant slowdowns and lack predictability and replicability, even when state-of-the-art experimentation techniques are used. We provide guidelines for practitioners to reduce the volatility of big data performance, making experiments more repeatable.more » « lessFree, publicly-accessible full text available February 1, 2030
An official website of the United States government

Full Text Available